93% of Paint Splatters are Valid Perl Programs

Colin McMillen and Tim Toady
twitter.com/mcmillen & famicol.in/sigbovik

Abstract

In this paper, we aim to answer a
long-standing’ open problem in the
programming languages community: is it
possible to smear paint on the wall
without creating valid Perl?

We answer this question in the
affirmative: it is possible to smear paint
on the wall without creating a valid Perl
program. We employ an empirical
approach which finds that merely 93%
of paint splatters parse as valid Perl. We
analyze the properties of paint-splatter
Perl programs, and present seven
examples of paint splatters which are
not valid Perl programs.

Background

In a February 2019 Twitter conversation,
Adrienne Porter Felt expressed a desire
for her kid to smear paint on the wall
instead of learning vocational skills such
as computer programming [1]. In
response, Jake Archibald posed the
question which forms the basis of this
research: “is it possible to smear paint on
the wall without creating valid Perl?” [2]

While many PL researchers have (often
derogatory) folk beliefs about the Perl
programming language, the language
itself has not been the subject of much
formal academic inquiry. One exception
is Jeffrey Kegler’s proof that the Perl
programming language is undecidable

' By “long-standing”, we mean “for roughly a
month or so”.

[3], often summarized with the maxim
“only perl can parse Perl”.

Another maxim of the Perl community is
“There Is More Than One Way to Do It.”
Despite the popularity of this maxim in
the Perl community, the authors are not
aware of any professional Perl engineers
whose development practices involve
smearing paint on walls.

We thus believe that we are the first
researchers in academia or industry to
directly address the question of whether
paint splatters are valid Perl programs.

Experimental Setup

Our approach to answering this question
is an empirical one. Given an input
image, we run optical character
recognition (OCR) software on that
image to extract candidate text. As
previously mentioned, the question “is
this string valid Perl?” is theoretically
undecidable; we therefore fed the
extracted text into the perl executable
(version 5.26.1) to check whether the
OCR’d string corresponded to a valid Perl
program.

We are not aware of the existence of any
standard paint-splatter datasets in the
object recognition or OCR communities.
Also, ImageNet’s website was down on

2 Often pronounced “Tim Toady”; hence the
name of the fictional second author of this paper.
(Like many researchers, we collaborate with
other authors primarily so that our use of the
royal “we” doesn’t come across as pretentious.)

https://twitter.com/mcmillen
http://famicol.in/sigbovik

the day that we decided to perform this
research. We therefore paid an
unemployed person® to download 100
examples of paint-splatter artwork by
searching Pinterest using the query
“paint splatter wallpaper”.

We manually filtered out all images with
any form of overlaid or watermarked
synthetic text, because the Perl program
(?) “iStock by Getty Images” is not
particularly interesting.

The resulting 100 images are shown in
Figure 1, and are also available online as
supplementary material to this paper
(see the Addendix).

Figure 1. Paint-splatter image dataset.

3 The first author.

To perform OCR on the input images, we
used the Tesseract OCR engine (version
4.0.0-beta.1) [4]. Tesseract is an
open-source OCR library that provides
two separate algorithms for optical
character recognition: a “legacy” engine
that uses traditional OCR techniques, and
a newer engine based on LSTM models.
Tesseract also provides a third OCR
engine which somehow combines the
two. Unfortunately, the documentation
does not describe this mode in detail, but
we chose to make use of it anyways.

Additionally, Tesseract provides multiple
algorithms for performing page
segmentation. For example, page
segmentation mode #4 assumes that the
page consists of a single (possibly
multiline) column of text; mode #7 treats
the image as a single line of text.

It is possible to configure Tesseract’s
legacy OCR engine with a list of allowed
characters expected to be in the input
alphabet. Since Perl programs mostly
consist of the printable subset of ASCII,
we restricted the OCR engine alphabet to
ASCII characters in the range [32, 127).
Tesseract’s newer LSTM-based engine
doesn’t appear support this sort of
configuration.* We also disabled features
related to language modeling where
possible (for example, penalties for
“words” that are not found in the English
dictionary).

It was unclear to the authors which OCR
engine and page segmentation modes
would best correspond to “splats of paint

4 Apparently in the brave new world of neural
nets, Anything Goes™ (except for the ability to
configure things.)

that might parse as valid Perl programs”.
Therefore, for each image, we tried all
combinations of the 3 OCR engines and 4
of the 14 different page segmentation
modes (modes #4, #7, #8, and #9) to
determine which configuration was the
most fruitful for producing a valid Perl
program out of that specific image.

This “try multiple algorithms until one of
them happens to work” approach is
profoundly unethical — especially since
we don’t have separate training, test, and
validation sets — but at least we’re being
honest about what we’re doing, instead
of inventing a fancy-but-obfuscatory
technical term like “ensemble methods”
or “hyperparameter tuning”.

Results

The main result of this paper is that 93 of
100 images in our dataset successfully
parsed as valid Perl programs under at
least one combination of Tesseract OCR
engine & page segmentation mode. (It is
worth explicitly noting that we only
considered non-empty Perl programs as
successes.)

The most fruitful single combination of
parameters is provided by the LSTM
engine using page segmentation mode 9,
which successfully produces valid Perl
programs out of 55% of paint splatters.

The pure LSTM approach was the most
successful of the three OCR engines, with
74% of input images successfully parsing
as Perl under at least one of the four
page segmentation modes. The legacy
OCR engine succeeded in finding valid
Perl programs on 62% of images, while

the combination legacy+LSTM engine
succeeded merely 40% of the time. It is
unclear why the combination of the two
OCR algorithms would be significantly
worse at recognizing valid Perl programs
than each OCR algorithm on its own.

Discussion & Analysis

While we successfully found valid Perl
programs in 93 of 100 input images, all
of these programs are uninteresting;
they don’t actually seem to do anything
when executed. However, some of them
do evaluate to a value, which is then
discarded without being displayed. [5]

We therefore passed each valid program
into Perl’s eval() function and printed
out the result of evaluating it. Many of
these are simple integer literals. Figure 2
shows an input image which is read by
OCR as the string “35"”, which evaluates
to the number 35 when parsed by Perl.

Figure 2. If you squint, you can see the
number 35.

Figure -3 shows a somewhat more
interesting case. This input image is read
by OCR as the string “- 3", which
evaluates to the number -3 when parsed
by Perl.

Figure -3. -3.

In all, the dataset contains 20 images
which can be parsed as numeric literals.
An interesting thing about these images
is that they’re not particularly
Perl-specific; for example, the program
shown in Figure -3 also evaluates as the
number -3 in Python (and presumably
several other programming languages.)

-3 is the smallest number resulting from
the output of our valid Perl programs;
the program which evaluates to the
largest number is shown in Figure 4.

. e

Figure 4. The wvalid Perl program
“225252", which evaluates to 225252.

The remainder of the wvalid Perl
programs are mostly valid due to a Perl
language feature that is not commonly
present in most programming languages.
Namely, Perl has a feature called
“unquoted strings”, in which a sequence
of alphanumeric characters by itself is
parsed as though it were a quoted string.
As an example, Figure 5 is read by OCR
as the text ME, which evaluates to the
string “ME"” even though the ME isn’t
quoted. This would result in a syntax
error in most other programming
languages.

¢

e,
=

Figure 5. It ME.

Figure 6 represents the string
“gggijgziifiiffif”, which by pure
coincidence happens to accurately
represent the authors’ verbal reaction
upon learning that “unquoted strings”
were a feature intentionally included in
the Perl language.’

Figure 6. gggijgziifiiffif!

5 This feature does enable a neat quine: the Perl
program “Illegal division by zero at
/tmp/quine.pl line 1.”, when saved in the
appropriate location, outputs “I1legal
division by zero at /tmp/quine.pl
line 1.” The reason for this behavior is left as
an exercise for the reader.

(To be fair to Perl, when perl is run with
the -w flag to enable warnings, it does
helpfully inform the user that at some
point in the future, the Perl developers
will most likely pick gggijgziifiiffif
as a new reserved word:

Unquoted string
"gggijgziifiiffif" may clash
with future reserved word at -
line 1.)

Another interesting case is presented in
Figure 7. This image represents the
source code “ ;" which is non-empty, but
which is just a statement separator that
does not evaluate to anything.

Figure 7. A statement of no purpose.

The Rogue’s Gallery

At this point, we would not blame the
reader for sympathizing with Jake
Archibald’s conjecture that all paint
splatters are in fact valid Perl programs.
Perhaps Adrienne’s kid is doomed to
accidentally write valid Perl even when
just trying to smear some paint around
at random. Here we finally present some
counterexamples: the seven images in
our dataset which do not, under any OCR
interpretation, parse as valid Perl.

Figure 8 presents a splatter which is read
by OCR as any of the following strings:
o fifi;%:'ili:
o .%f:
o &
[]

1:%:";;:

Surprisingly, none of these strings
represent valid Perl programs.

W

Figure 8. Not valid Perl. Obviously.

For completeness, we present the other
six such images as Figure 9.

Figure 9. Finally, we are free of the
tyranny of accidentally writing valid Perl
programs. These are the sorts of paint
splatters one might want one’s child to
produce when they’re just having fun.

&,
Woomy?!? a™%

Fans of the Splatoon video game series
will naturally be wondering whether the
“splats” in Nintendo’s official game
artwork are also valid Perl programs.
Our preliminary answer is yes: the
image in Figure 10, downloaded from
Nintendo’s official Splatoon website [6],
successfully parses as a valid Perl
program.

Figure 10. Splat splat splat... woomy?

Given Nintendo’s family-friendly image,
the authors were surprised to find out
that the source code that results from
OCR’ing this image is somewhat NSFW.®
We thus we elide it here, for the sake of
SIGBOVIK’s younger readers.

Future Work

While the results presented in this paper
are novel and important, they only begin
to break ground on what could be a very
fruitful area of further research.

6 Really, it's Perl itself that's most unsafe for
work.

The dataset used in this paper is a
relatively small dataset of only 100
paint-splatter images. It would be good
to confirm these results on a larger
dataset, and with a greater variety of
images. Perhaps next time ImageNet
won’t be down.

We also noticed far too late that while
the original question referred to paint
smears, we elected to search Pinterest
only for paint splatters. It is unclear at
whether these results would change
significantly for paint splatters vs. paint
smears.

Similarly, our choice to select images
from Pinterest ensured that they were
reasonably high-quality paint splatters,
as at least one Pinterest user had chosen
to “pin” that image as something worth
saving for later. It would be worth
investigating ~ whether = amateurish,
lower-quality paint splatters — such as
those produced by a young child — are
less likely to be parsed as valid Perl
programs.

After downloading the 100 images used
in our dataset, Pinterest somehow
inferred that the authors of this paper
might be interested in images of
“swimwear trends”. We have not yet
investigated whether 2019’s latest
swimwear trends are more or less likely
to parse as valid Perl programs.

Addendix

The source code for the research
presented in this paper, as well as the
full dataset of 100 paint-splatter images
& the result of evaluating each, will soon
be available at http://famicol.in/sighovik.

References

[1] Adrienne Porter Felt.
https://twitter.com/ apf /status/109569
8777300586496.

[2] Jake Archibald.
https://twitter.com/jaffathecake/status/10
95706032448393217.

[3] Jeffrey Kegler. “Perl Is Undecidable”.
The Perl Review, Volume 5, Issue 0, Fall
2008, pp- 7-11. Available online at
http://www.jeffreykegler.com/Home/perl
-and-undecidability.

[4] Tesseract Open Source OCR Engine.
https://github.com/tesseract-ocr/tesseract

[5] Patrician|Away and bovril,
personal correspondence. Recorded at
http://bash.org/?240849.

[6] Splatoon 2 amiibo™ home page.
https://splatoon.nintendo.com/amiibo/.

http://famicol.in/sigbovik
https://twitter.com/__apf__/status/1095698777300586496
https://twitter.com/__apf__/status/1095698777300586496
https://twitter.com/jaffathecake/status/1095706032448393217
https://twitter.com/jaffathecake/status/1095706032448393217
http://www.jeffreykegler.com/Home/perl-and-undecidability
http://www.jeffreykegler.com/Home/perl-and-undecidability
https://github.com/tesseract-ocr/tesseract
http://bash.org/?240849
https://splatoon.nintendo.com/amiibo/

